Stellenwert der autologen Transfusion in der Hämotherapie

Ralf Karger

Institut für Transfusionsmedizin und Hämostaseologie

Inhalt

- Präoperative Eigenblutspende (PEBS)
 - Rechtliche Rahmenbedingungen
 - Indikation und Kontraindikationen
 - Verfahren
 - Determinanten von
 - Wirksamkeit
 - Effektivität
 - Effizienz (Kosten-Effektivität)
- Perioperative Verfahren (ANH, MAT)
 - Technische Prinzipien
 - Produktqualität

BGH-Urteil 1991 -> RiLi; TFG

BGH-Urteil vom 17.12.1991

- Der Arzt ist bei planbaren Eingriffen verpflichtet, über die Eigenblutanwendung aufzuklären, wenn es für ihn "ernsthaft in Betracht kommt, dass bei diesem Patienten intra- oder postoperativ eine Bluttransfusion erforderlich werden kann"
- Aufnahme in Hämotherapie-Richtlinien
- Aufnahme ins Transfusionsgesetz

Inhalt

- Präoperative Eigenblutspende (PEBS)
 - Rechtliche Rahmenbedingungen
 - Indikation und Kontraindikationen
 - Verfahren
 - Determinanten von
 - Wirksamkeit
 - Effektivität
 - Effizienz (Kosten-Effektivität)
- Perioperative Verfahren (ANH, MAT)
 - Technische Prinzipien
 - Produktqualität

Indikation und Kontraindikationen

Hämotherapie-Richtlinien

- Planbarer Eingriff
- Transfusionswahrscheinlichkeit ≥ 10 %
- Individuelle Aufklärung

Kontraindikationen

- Schwere KHK (Hauptstammstenose, MI, AP)
- Dekompens. Herzinsuffizienz, Aortenstenose
- Akute Infektionen (hämatogene Streuung!)
- Synkopen unklarer Genese

Inhalt

Präoperative Eigenblutspende (PEBS)

- Rechtliche Rahmenbedingungen
- Indikation und Kontraindikationen
- Verfahren
- Determinanten von
 - Wirksamkeit
 - Effektivität
 - Effizienz (Kosten-Effektivität)

Perioperative Verfahren (ANH, MAT)

- Technische Prinzipien
- Produktqualität

Verfahren

Vollblutspende

- Leukozytendepletiertes Vollblut
- Buffy-coat-freies Erythrozytenkonzentrat +
 Gefrorenes Frischplasma
- (Doppel)-Erythrozytapherese
- Präoperative Plasmapherese
- Supportive Maßnahmen
 - Volumensubstitution
 - Fe-Gabe (oral / i.v.)
 - Erythropoietin

(Doppel-)Erythrozytapherese

Vorteile

- Optimale Stimulation der Erythropoiese
- Gleichmäßige Produktqualität
- Weniger Aufwand für den Patienten
- Weniger Personalaufwand

Nachteile

- Höhere Kosten durch Hämapherese-Set
- Ungünstig bei niedrigem Ausgangs-Hb?
- Hohe Kreislaufbelastung durch EKV?
- Akzeptanz durch die Patienten?

Präoperative Plasmapherese

Indikation

- Eingriffe mit Blutverlust, dessen Ausmaß eine Gerinnungsstörung erwarten lässt
- Als autologes Volumenersatzmittel?

Nachteile

- Bedarf noch schlechter planbar als bei PEBS
- Daher in den meisten Fällen ineffizient und teuer

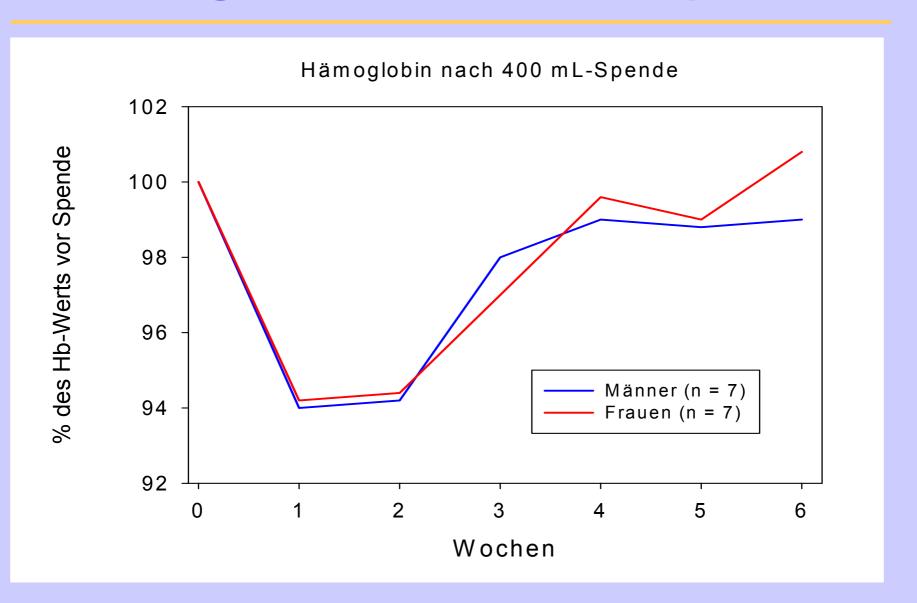
Inhalt

Präoperative Eigenblutspende (PEBS)

- Rechtliche Rahmenbedingungen
- Indikation und Kontraindikationen
- Verfahren
- Determinanten von
 - Wirksamkeit
 - Effektivität
 - Effizienz (Kosten-Effektivität)
- Perioperative Verfahren (ANH, MAT)
 - Technische Prinzipien
 - Produktqualität

Klinische Bewertung medizinischer Maßnahmen

Parameter	Untersuchungs-/ Bewertungsverfahren	Zielkriterium/ Bewertungsmaß	
Wirksamkeit (efficacy)	Kontrollierte, randomisierte Phase-II- Studien	"Surrogat"- Parameter, z. B. Zahl der verhinderten Fremdbluttransfusion en	
Effektivität (effectiveness)	Kontrollierte, randomisierte Phase-III- Studien; Entscheidungsanalysen	Morbidität, Mortali- tätsraten oder Nutzenwerte (QALY)	
Effizienz (efficiency)	Kosten- Effektivitäts/Nutzen- Analyse	\$ od. € pro QALY	


Wirksamkeit der PEBS

- Die Wirksamkeit ("efficacy") von PEBS ist die Voraussetzung für ihren klinischen Nutzen ("effectiveness", Effektivität)
- Das Ausmaß der Reduktion von Fremdbluttransfusionen definiert die Wirksamkeit der PEBS
- Effektivität heißt, dass der Patient einen klinisch erfahrbaren Nutzen durch die PEBS erfährt (Verminderung der Morbidität u./o. Mortalität)

Determinanten der Wirksamkeit

- Optimierung bzw. Maximierung der Erythrozytenregeneration zwischen Spende und Operationszeitpunkt
 - Stimulation der Erythropoiese durch aggressives Spende-Regime
 - Maximierung des Intervalls zwischen
 Spenden u. OP-Zeitpunkt
 - Einsatz supportiver Maßnahmen (Fe++-Substitution, ggf. EPO)

Hb-Regeneration nach VB-Spende

Physiologie

- Die Regeneration des Hämoglobinverlustes <u>einer</u> Blutspende dauert im Durchschnitt 3-4 Wochen
- Eine vollständige Regeneration des Hb-Verlustes von 2 Eigenblutspenden innerhalb von 5 Wochen gelingt in den meisten Fällen nicht!
- Ein Anstieg des endogenen Erythropoietin-Spiegels ist regelhaft nur bei Hb-Konzentrationen < 105 g/L zu erwarten.

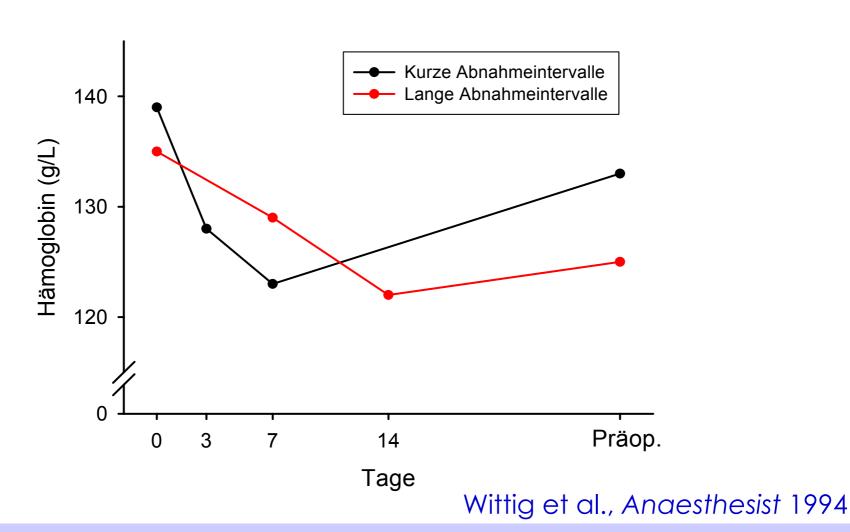
Determinanten der Hb-Regeneration

- Ausmaß und Kinetik der Hb-Regeneration sind abhängig von
 - dem Ausgangs-Hb-Wert
 - Dem Nadir des Hb-Wertes nach Abnahme aller EB-Konserven
 - der Menge des blutbildenden Knochenmarks
 - dem Eisenstatus des Patienten

Regenerationspotential

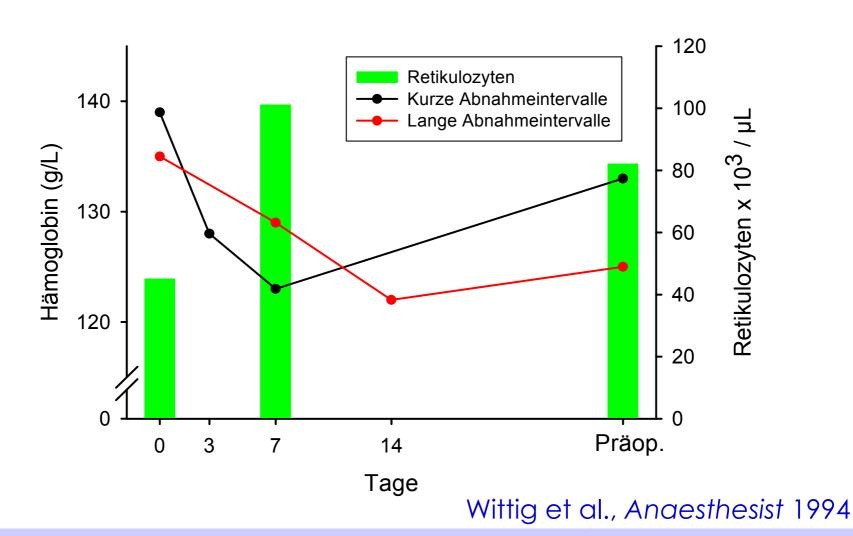
Parameter	Gesamt (N=86)	Männer (N=41)	Frauen (N=45)
Intervall 1. Spende ↔ Op.	26 (5)	n. a.*	n.a.
2. Spende ↔ Op. Hb vor Spende (g/L)	19 (5) 147 (10.9)	153 (9.9)	141 (7.7)
Präop. Hb (g/L)	132 (12.4)	141 (10.3)	124 (8.0)
Regeneriertes Hb (g)	67 (30)	76 (31)	59 (27)
Relativer Gewinn (g Hb/L BV)	14.3 (6.2)	14.5 (5.8)	14.1 (6.6)†
Gewinn in EKs (n)	1.5 (0.7)	1.7 (0.7)	1.3 (0.6)†

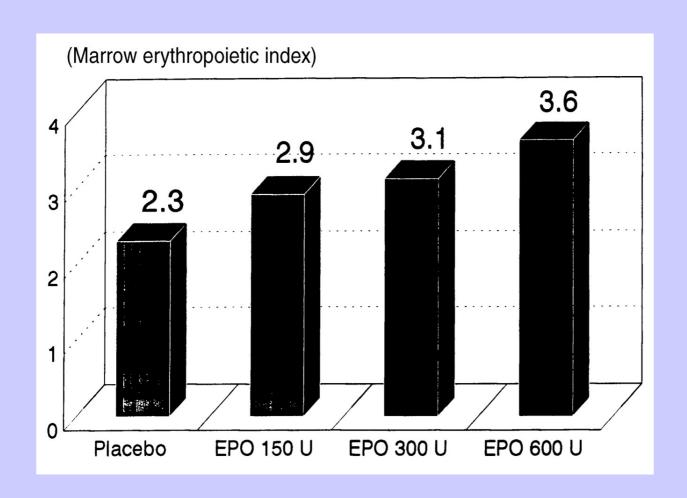
^{*}n. a. = nicht analysiert


t p > 0.05 Männer vs. Frauen

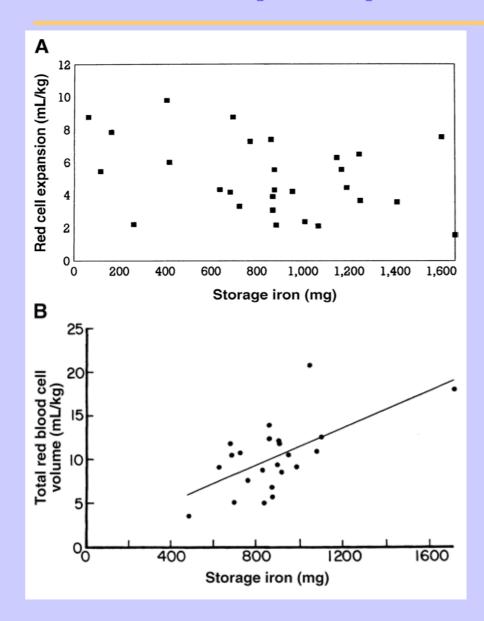
Karger et al., Transfus Med 2007

Siehe auch P4.13 DGTI 2007


Bedeutung des Spende-Regimes

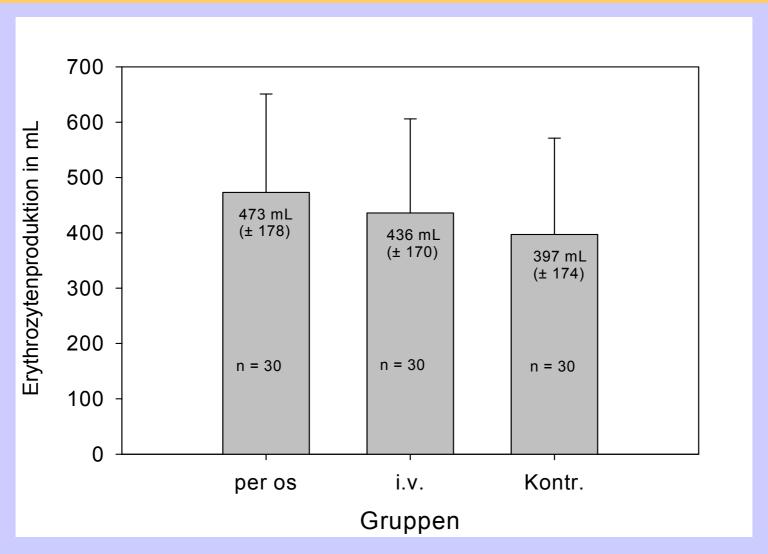


Bedeutung des Spende-Regimes


Erythropoiese während EB-Spende

Erythropoietin und PEBS

Erythropoietin und Eisen



 Die endogene Erythropoiese ist unabhängig von den Eisenspeichern (A).

 Die Wirkung exogen zugeführten Erythropoietins hängt von den Eisenspeichern ab (B).

Goodnough et al., Vox Sang 1998

Wirksamkeit einer Eisentherapie

Wirksamkeit von PEBS

Studien	Allogenes Trans- fusionsrisiko RR (95%-KI)	Transfusionsrisiko RR (95%-KI)
8/7 randomisierte Studien ¹	0.37 (0.26-0.52)	1.29 (1.12-1.48)
11/9 randomisierte Studien ²	0.36 (0.25-0.51)	1.33 (1.10-1.61)
42/34 kontrollierte Beobachungsstudien ¹	0.31 (0.27-0.35)	1.91 (1.60-2.28)
5/4 Kardiochirurgie	0.49 (0.37-0.65)	1.35 (1.22-1.50)
18/13 Orthopädie	0.29 (0.25-0.34)	1.61 (1.20-2.15)
10/8 Onkologie	0.21 (0.17-0.26)	1.87 (1.43-2.46)
9/9 Andere	0.39 (0.29-0.54)	4.65 (2.46-8.79)

¹Carless et al., Transfus Med 2004 ²Davies et al., Health Technol Assess 2006

Inhalt

Präoperative Eigenblutspende (PEBS)

- Rechtliche Rahmenbedingungen
- Indikation und Kontraindikationen
- Verfahren
- Determinanten von
 - Wirksamkeit
 - Effektivität
 - Effizienz (Kosten-Effektivität)
- Perioperative Verfahren (ANH, MAT)
 - Technische Prinzipien
 - Produktqualität

Effektivität der PEBS

- Reduktion der mit der Fremdbluttransfusion assoziierten negativen Einflüsse auf das Outcome der Patienten (R_{HT})
 - Vermeidung von Infektionen
 - Vermeidung von Immunisierungen
 - Vermeidung von Immunreaktionen
 - Vermeidung von Immunsuppression/modulation
- Unter der Voraussetzung eines vernachlässigbaren Spende-Risikos (R_{PEBS})

NW-Risiko bei der Spende

Autor	Group	N =	Reactions [%]	Severe reactions
McVay PA Vox Sang 1990	Donors	219,307	2.5	1:2700
VOX Sarig 1770	Patients	10,200	2.5	1:2560
Popovsky MA Transfusion 1995	Donors	3.9 Mio	n. d.*	1:200,000
	Patients	218,190	n. d.	1:16,667

^{*}n. d. = not determined

Einflüsse auf Zytokin-Sekretion

	Spende	Operation	Transfusion	LD/Non- LD	Geschlecht
TNF	-		++		
IL-2(P)	+	(-)			(-)
IL-2(C)	++				
IFN(P)			(-)		
IFN(C)	(+)	-			
IL-4(P)		-			
IL-4(C)	(+)	-			
IL-10(P)			(-)		(-)
IL-10(C)	(+)	-	(-)		-

Effektivität von PEBS

- Wegen der Seltenheit der negativen Folgen der Fremdbluttransfusion praktisch nicht in randomisierten Studien analysierbar
- Effektivität wird in entscheidungsanalytischen Modellen bestimmt und in QALYs ausgedrückt
- Erlaubt den Vergleich mit medizinischen Maßnahmen, auch in Bezug auf die pro QALY entstehende Kosten ("Effizienz")

PEBS – Effektivität

Outcome	RR (95%-KI)	
Mortalität		
Keine Studien	./.	
Re-Operation (wg. Blutung)		
3 Beobachtungsstudien	0.43 (0.07- 2.67)	
Infektionen		
3 randomisierte Studien	0.70 (0.34- 1.43)	
2 Beobachtungsstudien	2.87 (0.72-11.46)	
Thrombosen		
2 randomisierte Studien	0.82 (0.21- 3.13)	

Carless et al., Transfus Med 2004

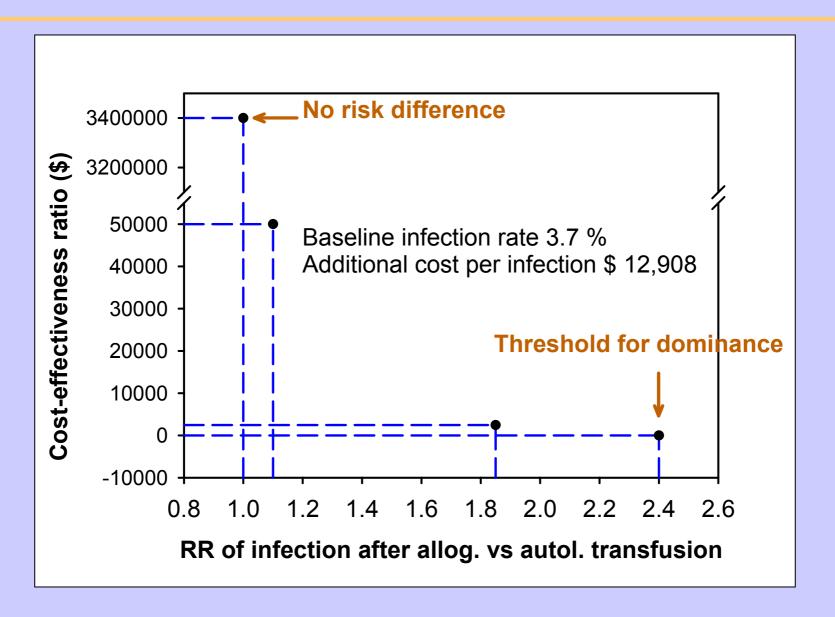
Inhalt

- Präoperative Eigenblutspende (PEBS)
 - Rechtliche Rahmenbedingungen
 - Indikation und Kontraindikationen
 - Verfahren
 - Determinanten von
 - Wirksamkeit
 - Effektivität
 - Effizienz (Kosten-Effektivität)
- Perioperative Verfahren (ANH, MAT)
 - Technische Prinzipien
 - Produktqualität

Kosten-Effektivität von PEBS – Studien

Studie	Jahr	Land	Analyse	Studiendesign	Per- spektive
Birkmeyer	1993	USA	CUA	EA-Modell	staatlich
Birkmeyer	1994	USA	CUA	EA-Modell	staatlich
Goodnough	1994	USA	CUA	EA-Modell	staatlich
Healy	1994	USA	CEA	EA-Modell	staatlich
Etchason	1995	USA	CUA	EA-Modell	staatlich
Blumberg	1996	USA	CEA	Fall/Kontroll	Klinik
Sonnenberg	1999 2002/3	USA	CUA	EA-Modell	staatlich
Horowitz	2002	USA	CUA	Retrospektive Kohorte	staatlich
Dietrich	2005	D	СМА	Prospektive Kohorte	Klinik

EA = Entscheidungsanalyse


KE von PEBS – Ergebnisse

Studie	Intervention	OP	KE-Ergebnisse (QALYs)
Birkmeyer	PEBS vs. HT	Hüft/Knie-TEP	167,000 - 1.47 Mio. \$
Birkmeyer	PEBS vs. HT	ACB	508,000 - 909,000 \$
Goodnough	PEBS vs. HT	Prostatektomie	531,000 - 2 Mio. \$
Healy	PEBS vs. HT	Hüft-TEP	Dominant - 181,000 \$
Etchason	PEBS vs. HT	Hüft-TEP ACB Hysterektomie Prostatektomie	87,000 - 235,000 \$ 263,000 - 494,000 \$ 334,000 - 1.36 Mio. \$ 1.05 - 23.64 Mio. \$
Blumberg	PEBS vs. HT	Hüft-TEP	Dominant (/transfund. Einheit)
Sonnenberg	PEBS vs. HT	Hüft-TEP	Dominant - 3.4 Mio. \$
Horowitz	PEBS vs. HT	Gynäkologie	> 1Mio. \$
Dietrich	PEBS vs. HT	Herzchirurgie	19 \$ / Fremdblut-EK

HT = homologe Transfusion

Karger & Kretschmer, Transfus Alternat Transfus Med 2007

KE u. postop. Infekte (Sonnenberg)

Einflüsse auf die Kosten von PEBS

Billiger Teurer

PCR-Testung von Fremdblut: HCV, HIV

Leukozytendepletion von Fremdblut

Neue serologische Tests für

Fremdblut: anti-HBc

Verzicht auf ALT-Testung bei Fremdblut

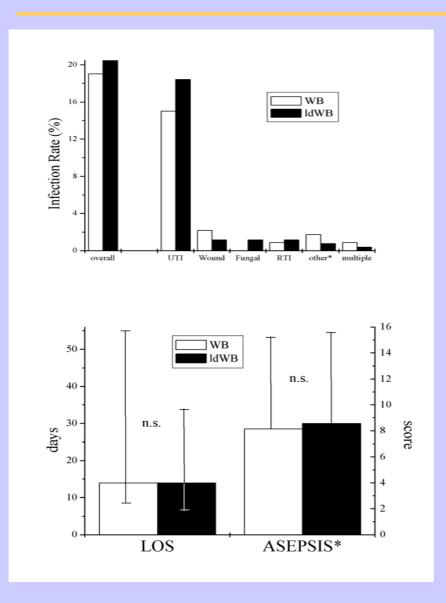
Leukozytendepletion von Eigenblut

Einflüsse auf die Effektivität von PEBS

Effektiver

Weniger effektiv

Neue, durch Blut übertragbare Leu Erkrankungen: von VCJD, SARS, Vogelgrippe, West-Nile-Virus


Leukozytendepletion von Eigenblut

Leukozytendepletion von Fremdblut

Bessere chirurgische Technik

Strengere Transfusionstrigger

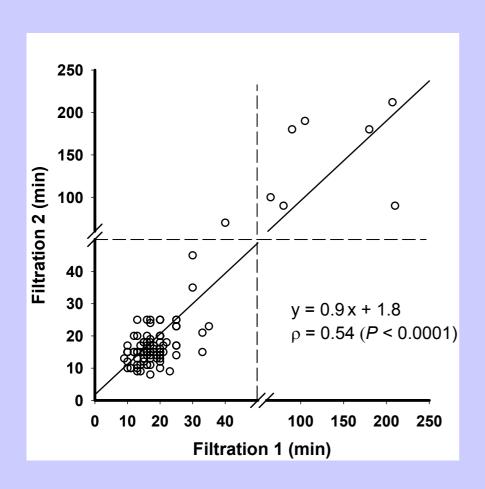
LDAWB-Studie

Design

- Randomisierte Studie
- Elektive Hüft-TEP
- ≥ 2 EB-Spenden
- VB vs. LD-VB

Ergebnisse

- ASEPSIS 8.04 vs. 8.32
- Infektionen 43 vs. 56
- LOS 14 vs. 14 Tage
- Antibiose 5 vs. 6 Tage


Frietsch et al., Transfusion, Eingereicht

Qualität von LD-VB

Präparat	Stabilisator	Lagerung (Tage)	N =	24h-in-vivo- Recovery
Vollblut	CPDA-1	35	63	79.8 (9.8)
BCH-EK (Hkt > 80%)	CPDA-1	35	11	62.0 (17.9)
BCH-EK (Hkt < 80 %)	CPDA-1	35	97	74.8 (13.9)
BCH-EK	Add. Lsg.	42	185	79.5 (6.5)
BCH-EK	PAGGS-S	49	10	78.2 (8.5)
BCF-EK	Add. Lsg.	42	66	79.6 (5.0)
LD-EK	Add. Lsg.	42	79	83.5 (5.2)
LD-Vollblut*	CPDA-1	42	6	84.0 (6.3)

* Opitz et al., Infus Ther Tranfus Med 2001

Filtrationsprobleme

Filtrationsversager

- -5-7% (allogen < 2%)
- Patientenspezifische
 Ursachen
- Aber auch nach
 Filtrationsdauer von
 bis zu 3 Std. noch
 gute Produktqualität
- Erythrozytenverlustvon 20 100 %(normal 5 10 %)

Kosten-Effektivität (KE) von PEBS

- Publizierte Studien sind allgemein von hoher Qualität, die zugrunde liegenden Daten sind aber meist überholt, z. B.
 - Birkmeyer 1993, Etchason: HIV 1:150,000
 - Birkmeyer 1994: HIV 1:500,000
- Derzeit hängt die KE von PEBS vor allem von der (proklamierten) Reduktion postoperativer infektiöser Komplikationen ab
- Verlässliche Daten für die Einschätzung der aktuellen KE von PEBS fehlen

Maßnahmen zur Erhöhung der KE

- Ausnutzen aller Möglichkeiten zur Steigerung der Effektivität
- Senkung der Kosten
 - Verzicht auf serologische Testungen
 - Verzicht auf Leukozytendepletion
 - (Doppel-)Erythrozytapherese
- Individualisierung der PEBS im Sinne der Hämotherapie-Richtlinien (aber: Verlust positiver Skaleneffekte!)

Inhalt

- Präoperative Eigenblutspende (PEBS)
 - Rechtliche Rahmenbedingungen
 - Indikation und Kontraindikationen
 - Verfahren
 - Determinanten von
 - Wirksamkeit
 - Effektivität
 - Effizienz (Kosten-Effektivität)
- Perioperative Verfahren (ANH, MAT)
 - Technische Prinzipien; Produktqualität
 - Wirksamkeit, Effektivität und Effizienz

Akute normovolämische Hämodilution

- Unmittelbar präoperativ Entnahme von 4-6 EK in Lagerbeutel mit Antikoagulanz (AC)
- Bei gleichzeitigem (i.d.R. kolloidalen)
 Volumenersatz
- Ziel: niedriger Ausgangs-Hb -> geringerer
 Erythrozytenverlust intraoperativ
- Retransfusion, sobald Transfusionstrigger erreicht
- Kontraindikationen wie bei PEBS

ANH – Produktqualität

- "Warmblut"
- Frische Erythrozyten (24-Stunden-Recovery, 2,3-DPG- und ATP-Gehalt normal)
- Das Hämostasepotential des Plasmas bleibt erhalten
- Die Funktionsfähigkeit der Thrombozyten bleibt erhalten
- <u>Nachteil:</u> nicht lagerungsfähig (keine Stabilisatoren bzw. Nährlösung)

ANH - Wirksamkeit

Studien	Allogenes Trans- fusionsrisiko RR (95%-KI)
24 randomisierte Studien	0.69 (0.56-0.84)
7 kontrollierte Beobachungsstudien	0.45 (0.29-0.70)

Carless et al., Transfus Med 2004

ANH - Effektivität

Outcome	RR (95%-KI)
Mortalität	
8 randomisierte Studien	1.16 (0.19- 7.15)
Re-Operationen (wg. Blutung)	
7 randomisierte Studien	1.59 (0.20-12.53)
2 Beobachtungsstudien	1.09 (0.07-16.39)
Infektionen	
2 randomisierte Studien	4.94 (0.61-40.19)
Thrombosen	
2 randomisierte Studien	0.44 (0.21- 0.93)
Herzinfarkt (nicht tödlich)	
3 randomisierte Studien	3.43 (0.15-79.74)

Carless et al., Transfus Med 2004

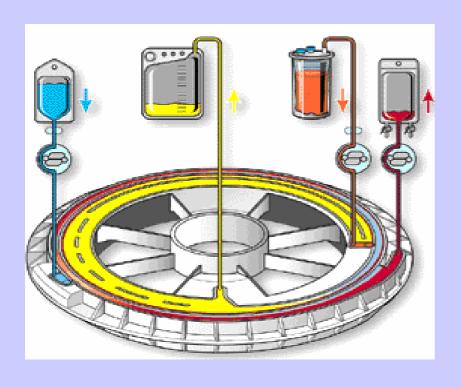
ANH – Kosten-Effektivität (KE)

Studie	Jahr	Land	Analyse	Studiendesign	Per- spektive	Kosten
Monk	1995	USA	CEA (CMA)	"Before/after"*	Klinik	Direkt
Monk	1997	USA	CEA	Prospektive Kohore	Klinik	Direkt
Mielke	1997	D	CEA (CMA)	Randomisiert	Klinik	Direkt
Goodnough	2000	USA	CEA (CMA)	Randomisiert	Klinik	Direkt

^{*}prospektive Kohorte (ANH) vs. "matched" historische Kontrollen (PEBS)

KE von ANH – Ergebnisse

Studie	Intervention	OP	KE - Ergebnisse
Monk 1995	ANH (+PEBS) vs. PEBS	Radikale Prostatektomie	ANH dominant
Monk 1997	ANH vs. PEBS+ANH	Radikale Prostatektomie	Nicht ermittelbar
Mielke	ANH vs.AHH*	Hüft-TEP	AHH dominant
Goodnough	ANH vs. PEBS	Hüft-TEP	ANH dominant


^{*}AHH = akute hypervolämische Hämodilution (mit HES)

Karger & Kretschmer, Transfus Alternat Transfus Med 2007

ANH – Hauptkritikpunkte

- Alle Studien: limitierte Generalisierbarkeit, keine Evaluation von ANH vs. keine Intervention
- Monk 1997: PEBS-Programm unwirksam
 (Hämatokritabfall von 46.8 auf 38.9 % nach PEBS von 1-2 Einheiten); keine KE-Schätzung möglich
- Goodnough: Mangelnde Power: Fremdbluttransfusionsrate von 17 % (ANH) vs. 0 % (PEBS) war statistisch nicht signifikant!

Maschinelle Autotransfusion (MAT)

- Sammeln von Wundblut in Reservoir (+AC)
- Waschen mit NaCl
- Separation von
 Erythrozyten und
 Plasma/Detritus/NaCl
 - Kontinuierlich
 - Diskontinuierlich
- Retransfusion der Erythrozyten (30-60 % Wiedergewinnung)

Autotransfusion – Produktqualität

Aufbereitetes Wund-/Drainageblut

- Erythrozytenqualität prinzipiell wie bei ANH
- Hämolysegefahr bei unsachgemäßem Saugen
- Leuko- und Thrombozyten entfernt
- Technisch bedingte Unterschiede

Direkt-Retransfusion (nicht zu empfehlen)

- Gefahr der Gerinnungsaktivierung
- Einschwimmung von Zytokinen, Endotoxin und anderen biologisch aktiven Substanzen

MAT - Wirksamkeit

Studien	Allogenes Trans- fusionsrisiko RR (95%-KI)
26 randomisierte Studien ¹	0.58 (0.47-0.73)
28 randomisierte Studien ²	0.59 (0.48-0.73)
26 kontrollierte Beobachungsstudien ¹	0.57 (0.46-0.69)

¹Carless et al., Transfus Med 2004

²Davies et al., Health Technol Assess 2006

MAT – Effektivität

Outcome (ausgewählte)	RR (95%-KI)
Mortalität	
11 randomisierte Studien	1.22 (0.55-2.70)
Re-Operationen (wg. Blutung)	
8 randomisierte Studien	1.08 (0.47-2.48)
Infektionen	
9 randomisierte Studien	0.75 (0.41-1.37)
Thrombosen	
4 randomisierte Studien	1.46 (0.56-3.83)
Herzinfarkt (nicht tödlich)	
5 randomisierte Studien	0.93 (0.31-2.77)

Davies et al., Health Technol Assess 2006

MAT – Kosten-Effektivität

Studie	Jahr	Land	Analyse	Studiendesign	Perspektive	Kosten
Guerra	1995	USA	CEA	Retrospektive Kohorte	Klinik	Direkt
Huber	1997	USA	CUA	Retrospektiv / EA-Modell	Staatl.	Direkt
Kilgore	1998	USA	CEA	RetrospeKtiv / EA-Modell	Kassen	Direkt
Jackson	2000	USA	CUA (CEA)	EA-Modell	Staatl.	Direkt
Thomas	2001	GB	CEA	Randomisiert	Unklar	Indirekt
Jones	2004	GB	CEA	"Before/after"	Staatl.	Direkt
Murphy	2005	GB	CEA	Randomisiert	Klinik	Direkt

KE von MAT – Ergebnisse

Studie	Intervention	OP	KE-Ergebnisse
Guerra	ICS* vs. PEBS+HT	Hüft-TEP	PEBS+HT dominant
Huber	ICS vs. HT	Aortenchirurgie	120,000-578,000 \$ / QALY
Kilgore	ICS vs. HT	ACB	ICS dominant
Jackson	PCS* vs. HT	Gelenkersatz	5.7 Mio. \$ / QALY
Thomas	PCS vs. HT	Knie-TEP	Nicht ermittelbar
Jones	PCS vs. HT	Gelenkersatz	PCS dominant
Murphy	ICS vs. HT	"off pump" ACB	Nicht ermittelbar

^{*}ICS/PCS = intraoperatives / postoperatives Cell Saving

KE von MAT – Fazit

- Erheblich variierende Ergebnisse; wahrscheinlich bedingt durch vielfältige Unterschiede in relevanten Einflussfaktoren zwischen den verschiedenen Studien
- Die vom Design her besten Studien erlauben keine Schätzung der KE wie z. B.
 - Kosten einer verhinderten Fremdbluttransfusion
 - Kosten einer QALY

KE von kombinierten Strategien

Studie	Jahr	Land	Analyse	Studiendesign	Perspektive	Kosten
Mah	1995	AUS	CEA	Retrospektiv + randomisiert	Klinik	Direkt
Shulman	1998	USA	CEA	Prospektiv	Klinik	Direkt
Diaz	1999	ESP	CEA	"Before/after"	Klinik	Direkt
Shulman	2002	USA	CEA	Fall/Kontroll	Klinik	Direkt
Haynes	2002	GB	CEA (CMA)	Randomisiert multizentrisch	Staatl.	Direkt

Kombinierte Strategien – Ergebnisse

Studie	Intervention	OP	KE-Ergebnisse
Mah	PEBS+/-PBS* vs. HT	Gelenkersatz	Nicht ermittelbar
Shulman	ANH†+ICS* vs. ICS	WS-Chirurgie	Kosten eines EK- Äquivalents: ANH/ICS < AT < ICS
Diaz	PEBS+PCS vs. "altes Verfahren"	Knie/Hüft-TEP	Nicht ermittelbar
Shulman	ANH†+PBS* vs. PCS	Hüft-TEP	Kosten eines EK- Äquivalents: ANH/PBS < PBS
Haynes	ICS+ANH vs. HT	Aortenchirurgie	ICS+ANH = AT

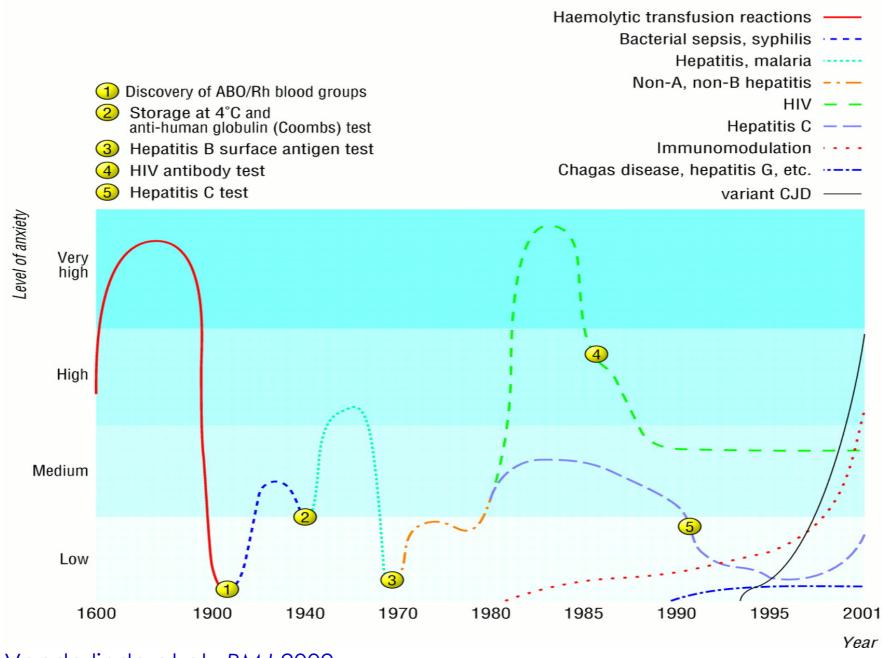
^{*} PBS beinhaltet hier ICS und PCS; †ANH schließt hier präoperative Plasmapherese mit ein

Karger & Kretschmer, Transfus Alternat Transfus Med 2007

Kombinierte Strategien – Fazit

- Eine Vielzahl unterschiedlicher und einzigartiger Ansätze verwendet
- Vergleich der Strategien nicht möglich, da kein gemeinsamer Schätzer für die KE mitgeteilt wurde oder berechnet werden konnte
- Die Durchführbarkeit und KE einer Strategie kann nur im Einzelfall unter Berücksichtigung der speziellen Rahmenbedingungen einer Klinik beurteilt werden

Die Wirksamkeit der autologen Transfusion


Verfahren	Allogenes Transfusionsrisiko RR (95%-KI)
PEBS	0.36 (0.25-0.51)
ANH	0.69 (0.56-0.84)
MAT	0.59 (0.48-0.73)

Zusammenfassung Effektivität

- PEBS: nicht durch Studien belegt;
 Modellrechnungen legen Effektivität nahe; <u>Cave</u>: Spenderisiko
- ANH: nicht durch Studien belegt; evtl. vermindertes Thromboserisiko?
- MAT: nicht durch Studien belegt
- Allgemein: die meisten Studien zeichnen sich durch vielfältige methodische Schwächen aus und erfüllen nicht die Ansprüche der Evidence-based medicine

Kosten-Effektivität – Zusammenfassung

- PEBS: fraglich; keine aktuellen Daten, eingeschränkte Generalisierbarkeit (Studien v. a. aus den USA)
- ANH: fraglich; fehlende Kontrollgruppen, limitiertes Patientengut
- MAT: fraglich; viele unterschiedliche
 Verfahren, stark variierende Ergebnisse
- Allgemein: methodische Schwächen, veraltete Daten; eingeschränkte
 Generalisierbarkeit

Vanderlinde et al., BMJ 2002

Fazit

- Autologe Hämotherapie ein medizinisch und wissenschaftlich interessanter
 Teilbereich der Transfusionsmedizin
- Strikte Beachtung der Determinanten von Wirksamkeit, Effektivität und Effizienz unverzichtbar
- Unter diesen Voraussetzung sinnvolle medizinische Maßnahme
- Angebot und Nachfrage unterliegen nicht nur medizinischen Einflussfaktoren

PD Dr. med. Ralf Karger, M.Sc.

Institut für Transfusionsmedizin und Hämostaseologie

Philipps-Universität Marburg

Conradistraße

D-35043 Marburg

Email: karger@mailer.uni-marburg.de

Vielen Dank für Ihre Aufmerksamkeit!